
1. Introduction:

This document gives an overview of the FIDO2 registration/authentication process using

GreenRADIUS components - GreenRADIUS FIDO2 server and GreenRADIUS Relying Party

(Client) libraries, and provides details about integrating these Relying Party libraries with a web

application.

2. FIDO2 Registration/Authentication:

2.1 FIDO2 Registration:

2.1.1 Flow Diagram:

https://greenrocketsecurity-my.sharepoint.com/:i:/p/support/EX4z0XRy4SVJvD6Jxv3uyFcBqUP-

8tGO0BMzSydCRGCGrQ?e=py5nQH

2.1.2 Steps:

1. On the Relying Party (RP) Web App, a user will initiate a request to register a FIDO2

authenticator.

2. The RP Web App (through the JavaScript library) forwards the registration request to

the RP server.

3. The RP server instantiates and initializes the PHP library and this library will forward the

registration request to the GreenRADIUS FIDO2 server.

4. The FIDO2 server creates an instance of publicKeyCredentialCreationOptions,

containing User Information , Relying Party Information and a Challenge buffer. The

challenge is randomly generated in order to ensure the security of the registration

process.

5. The server sends the publicKeyCredentialCreationOptions instance back to the PHP

library (RP server).

6. The RP server obtains this response from the PHP library and passes it back to the JS

library.

7. The JS library invokes the browser's navigator.credentials.create() API with

publicKeyCredentialCreationOptions as input.

https://greenrocketsecurity-my.sharepoint.com/:i:/p/support/EX4z0XRy4SVJvD6Jxv3uyFcBqUP-8tGO0BMzSydCRGCGrQ?e=py5nQH
https://greenrocketsecurity-my.sharepoint.com/:i:/p/support/EX4z0XRy4SVJvD6Jxv3uyFcBqUP-8tGO0BMzSydCRGCGrQ?e=py5nQH

8. The browser communicates with the authenticator using CTAP1/2 (when communicating

with an external/roaming authenticator like Yubico,etc) or directly (if it's a platform

authenticator like Windows Hello, Android Platform,Apple TouchID).

It validates the fields in publicKeyCredentialCreationOptions and augments it with

some extra fields like origin to create a clientDataJSON object.

The browser passes the publicKeyCredentialCreationOptions information along with

the SHA256 hash of the clientDataJSON object - clientDataHash - to the authenticator

by invoking authenticatorMakeCredential() on the Authenticator.

9. The authenticator will ask for some form of user consent.

10. The user provides the verification.

11. After verifying consent, the authenticator then creates a new asymmetric key pair and

stores the private key and a globally unique credential Id for future reference.

The public key becomes part of the attestation, which the authenticator signs over with

the attestation private key. The manufacturer’s attestation certificate chain may also be

returned so that the relying party can validate the device back to a root of trust.

12. The Authenticator then returns the attestationObject to the browser.

13. The browser augments the attestationObject with the clientDataJSON to form

authenticatorAttestationResponse and sends it to the JS library

14. The JS library will forward the authenticatorAttestationResponse to the Relying Party

(RP) server

15. The RP server instantiates and initializes the PHP library and this library will forward the

authenticatorAttestationResponse to the GreenRADIUS FIDO2 server.

16. The FIDO2 server performs a series of verification steps to ensure the integrity of the

registration process per WebAuthn specifications and Relying Party's policies.

17. The FIDO2 server responds back to the RP Server with the status of the verification and

registration.

18. The RP server sends the status of registration to the JS library.

19. The JS library calls the callback function provided to it.

2.2 FIDO2 Authentication:

2.2.1 Flow Diagram:

https://greenrocketsecurity-

my.sharepoint.com/:i:/p/support/EWdG3AayUYNAqYfpCXav8x0BrlBylxWKrHEAl7AAmBE3Zg?

e=sxlgEU

2.2.2 Steps:

1. On the Relying Party (RP) Web App, a user will initiate a request to authenticate using a

FIDO2 authenticator.

2. The RP Web App (through the JavaScript library) forwards the authentication request

to the RP server.

3. The RP server instantiates and initializes the PHP library and this library will forward the

authentication request to the GreenRADIUS FIDO2 server.

4. The FIDO2 server creates an instance of publicKeyCredentialRequestOptions,

containing a Challenge buffer. The challenge is randomly generated in order to ensure

the security of the registration process.

5. The server sends the publicKeyCredentialRequestOptions instance back to the PHP

library (RP server).

6. The RP server obtains this response from the PHP library and passes it back to the JS

library.

7. The JS library invokes the browser's navigator.credentials.get() API with

publicKeyCredentialRequestOptions as input.

8. The browser communicates with the authenticator using CTAP1/2 (when communicating

with an external/roaming authenticator like Yubico,etc) or directly (if it's a platform

authenticator like Windows Hello, Android Platform,Apple TouchID).

It validates the fields in publicKeyCredentialRequestOptions and augments it with some

extra fields like origin to create a clientDataJSON object.

The browser passes the publicKeyCredentialRequestOptions information along with

the SHA256 hash of the clientDataJSON object - clientDataHash - to the authenticator

by invoking authenticatorGetCredential() on the Authenticator.

9. The authenticator finds a credential that matches the Relying Party ID and prompts the

user to consent to the authentication.

https://greenrocketsecurity-my.sharepoint.com/:i:/p/support/EWdG3AayUYNAqYfpCXav8x0BrlBylxWKrHEAl7AAmBE3Zg?e=sxlgEU
https://greenrocketsecurity-my.sharepoint.com/:i:/p/support/EWdG3AayUYNAqYfpCXav8x0BrlBylxWKrHEAl7AAmBE3Zg?e=sxlgEU
https://greenrocketsecurity-my.sharepoint.com/:i:/p/support/EWdG3AayUYNAqYfpCXav8x0BrlBylxWKrHEAl7AAmBE3Zg?e=sxlgEU

10. The user provides the verification.

11. After verifying consent, the authenticator signs the clientDataHash and

authenticatorData using the previously generated private key during the registration

phase, thus creating an assertionObject.

12. The Authenticator then returns the assertionObject to the browser.

13. The browser augments the assertionObject with the clientDataJSON to form

authenticatorAssertionResponse and sends it to the JS library

14. The JS library will forward the authenticatorAssertionResponse to the Relying Party (RP)

server

15. The RP server instantiates and initializes the PHP library and this library will forward the

authenticatorAssertionResponse to the GreenRADIUS FIDO2 server.

16. The FIDO2 server performs a series of verification steps to ensure the integrity of the

authentication process per WebAuthn specifications and Relying Party's policies.

17. The FIDO2 server responds back to the RP Server with the status of the assertion

verification results.

18. The RP server sends the status of authentication to the JS library.

19. The JS library calls the callback function provided to it.

3. GreenRADIUS FIDO2 Relying Party Libraries:

3.1 Relying Party Client library (fido2-lib.js):

This library interacts with the navigator.credentials.create() and navigator.credentials.get()

APIs defined by the Webauthn specification for creating and using credentials.

3.1.1 Integrating the Javascript library with existing application webpages:

1. Include the JS library in a web page using the <script> tag, as below:

<script src="/path/to/library/file"></script>

e.g. <script src="fido2-lib.js"></script>

2. Once the library is included, the FIDO2 registration/authentication functions provided by

the library can be used.

3. For the FIDO2 registration operation, make a call to the registerUser() function. This

function requires the following parameters:

a. user

● the username of the user trying to login.

b. password

● the password of the user trying to login

c. token_label

■ a label to identify a token

d. authApiUrl

● the URL of the authentication API of the RP application (e.g. /my-rp/auth-

apis/auth.php)

e. callbackFunc

● This is a function that will get called, from within the library, once the

result (success/fail) of the registration operation is obtained.

● This callback function should have the following parameters and perform

the desired action based on the values set for these parameters .

I. authStatus - this will be set to 0/1 by the library based on

the result of the operation.

II. authDetails - the details regarding the result of the

operation will be set in this parameter

III. username - the username in the request will be set in this

parameter

● Consider the following example of a callback function provided to the

registerUser() function of the library-

 function callBackFunction(authStatus, authDetails, username)

{

if(authStatus == 1)

{

window.alert('Login success for user '+username);

 window.location = "/demo-site/account.php";

}

 else

 {

window.alert('Login failed for user '+username+'.

Details: '+authDetails);

 }

}

4. For the FIDO2 authentication operation, make a call to the authenticateUser()

function. This function requires the same parameters as for the registerUser() function,

except the token_label. Please refer to the above mentioned parameters.

3.2 Relying Party Server library (GrsFido2ClientService.php):

This library relays the FIDO2 request/response between the Javascript library and the

GreenRADIUS FIDO2 server.

3.2.1 Requirements for the PHP library:

1. The client PHP library requires configuration values like FIDO2 server address, Relying

Party identifier, Client ID, Shared Secret.

2. These values need to be maintained somewhere (file, database, etc.) by the RP

application and fetched when required.

3.2.2 Integrating the PHP library with RP application authentication API:

1. Include the RP server (PHP) library in an authentication API using the following syntax:

require ‘/path/to/library/file’;

e.g. require './GrsFido2ClientService.php';

2. Create an instance of the GrsFido2ClientService class and pass the following

initialization values:

$fido2Service = new GrsFido2ClientService ($fido2Server, $relyingParty, $clientId,

$sharedSecret);

a. $fido2Server - the IP address/hostname of the GreenRADIUS FIDO2 server

(e.g. 10.61.0.222)

b. $relyingParty - the relying party identifier, a valid domain string that identifies the

FIDO2 Relying Party (e.g. fido2demo.com)

c. $clientId

d. $sharedSecret

3. The RP application’s authentication API should fetch the above values from a config file /

database / etc. and pass it to the library while creating the instance of it.

4. Once the instance (object) is created, invoke the proxyFido2Request() method of the

class. This method requires the FIDO2 request payload as a parameter.

$fido2Service->proxyFido2Request($reqData['fido2Payload']);

The authentication API should extract the ‘fido2Payload’ parameter from the FIDO2

request and pass it on to the proxyFido2Request method.

5. The above method of the library will communicate with the GreenRADIUS FIDO2 server

and return the appropriate response from the server.

